
It has been at least a decade since the wave of deep learning first washed over the field of natural
language processing (NLP). Since then, we have seen deep learning methods support exciting and
rapid progress across a spectrum of NLP tasks, from classics like syntactic parsing and part-of-speech
tagging to new (or newly revived) tasks such as question answering and entailment reasoning. Inmany
of themost popular andmost critical shared tasks, high-capacity deep learning systems are now at the
state of the art. Many of these models exhibit a striking unity of architecture: they are variations on
what is mostly a shared formula, combining neural network sequence models with continuous vector
representations of words. Various elaborations of this architecture have fueled many of the successes
which have led artificial intelligence luminaries to proclaimNLP as the researchworld’s “next frontier”
to be conquered by neural networks and deep learning.

There is no question that this class of models has helped push the field forward in substantial
ways. But I am convinced that there is much more to language learning and language use which these
models do not currently capture. Much of what we currently fail to capture are just those qualities
which are necessary for deploying robust and safe systems for natural language understanding.

The next decades will see increasing deployment of systems for dialogue and information retrieval
in environments frompreschools to nursing homes. With real-world deployment inmind, it is critical
to examine how these bleeding-edge algorithms perform beyond simple measures of precision and
recall evaluated on cleaned test sets. In particular, after working with such models for several years
in deep learning for NLP, I am motivated to investigate three recurring deficits:

Interpretability and evaluation. When models work, it’s often not clear why they do. When models
don’t work, it’s also often not clear why they don’t. We cannot make guarantees about perfor-
mance or draw theoretical conclusions from models whose behavior cannot be explained.

Generalization and transfer. Humans can quickly and robustly deal with novel words and novel con-
cepts in the language they encounter. High-capacity deep learning models are often brittle in
the face of new data, and fail to transfer between tasks or even between domains. We have no
theory for reasoning about how these large-capacity models will or will not generalize to novel
circumstances.

Grounding and common-sense reasoning. Many models exhibit a deficient understanding of the
real world [5]. We ought to select tasks and model architectures which promote the capacity to
reason abstractly and draw on sense data just as humans do.

I believe that the first solution to the above problems is to design and promote new tasks which
require us to explicitly address these issues (cf. my recent argument in [2, 3]). InMIT’s Department of
Brain and Cognitive Sciences, I do just this by bridging between NLP and the field of computational
cognitive science. Within cognitive science, one of the primary research goals is to construct new
evaluation paradigms of just this sort. In particular, cognitive scientists support paradigms which
allow us to compare the performance of our models to theoretically informed notions of intelligent
behavior. We acknowledge that a significant step in building intelligent and robust AI systems is to
first characterize what sort of intelligence and robustness it is which humans exhibit.

My current project is an example of bridging between these two fields in a way which addresses
these high-level problems. I am constructing a virtual world paradigm which consists of a 3-D world
of simple shapes, which can be dynamically generated in any spatial configuration. These controlled
environments have recently become popular within the NLP dialogue and question answering com-
munities [see e.g. 6, 4]. This paradigm allows us to test new approaches to rapid inference and gener-
alization in NLP systems, while simultaneously exploring theoretical questions in cognitive science.
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My first project within this virtual world paradigm is designed to address the issues of general-
ization and common sense reasoning from first principles. I am designing a model which captures
a phenomenon known in language acquisition as fast mapping: the ability to make rapid inferences
about the meanings of completely novel words [1]. Children are able to fast-map word meanings be-
fore they are two years old, and they exploit the skill as they rapidly acquire new words in their early
years.

Figure 1: A word-learning scene
from the CLEVR dataset [4]. Sup-
pose someone asks you to “touch
the red blicket in front of the sphere.”
What is the meaning of blicket? Syn-
tactic cues suggest it is a noun. From
reasoning about the intentions of
the speaker, we can guess that there
is indeed a blicket in the scene. Fi-
nally, by looking at the scene, we can
guess that a blicket is a cylinder.

A system which implements fast mapping must make informed
predictions about howmeanings generalize from a very limited num-
ber of examples. Decades of research in language acquisition suggest
that children exploit secondary sources of evidence — prior knowl-
edge, information from the physical environment, social cues, and
much more — to perform this inference. This project promises to of-
fer a computational description of these fast-mapping behaviors, and
at the same time offer a ready-to-use implementation of one-shot in-
ference in grounded language learning contexts. The figure to the
right illustrates an example of these ideas.

I believe this bottom-up approach to modeling language acqui-
sition is the most promising way to make surefire, non-incremental
progress in systems which can successfully and robustly learn from
and interact with real humans. After several years as a researcher in
natural language processing and machine learning, I’ve taken on this
focus in cognitive science in order to better understand exactly what
it is that we as language researchers are attempting to model in the
first place.

It is slowly becoming clear what happens when artificial intelligence researchers attempt to engi-
neer a solution before fully understanding what it is they are actually attempting to solve. Take the
fundamentally ill-posed problems of “image recognition” and “question answering.”1 Both of these
fields have likewise discovered puzzling instances of adversarial examples: cases in which trivial mod-
ifications to an input cause a system to produce an incorrect answer with high confidence. Such ex-
amples reveal that, contrary to superficial appearances, these systems actually fail to acquire a correct
model of the world.

But what is a “correct” model of the world in the first place? The answer to this question — and
the long-horizon path to success in artificial intelligence — requires us to understand what it is
humans are doing in the first place when they see, speak, and listen.

The long-term solutions tomassive problems likemodel interpretability and effectivemodel trans-
fer won’t come from engineering hacks screwed onto existing systems. They will come first from a
proper understanding of the tasks themselves we are attempting to solve. The goal of my research is to
help specify those tasks — first by taking a close look at how humans actually acquire language, and
then by building models to capture this behavior on a low level.

1. S. Carey and E. Bartlett. Acquiring a single new word. 1978. 2. J. Gauthier. On “solving language”. 2016. 3. J. Gauthier
and I. Mordatch. A paradigm for situated and goal-driven language learning. NIPS Machine Intelligence Workshop, 2016.
4. J. Johnson and et al. CLEVR. 2016. 5. L. Lucy and J. Gauthier. Are distributional representations ready for the real
world? 2017. 6. S. Wang, Percy Liang, and Christopher D Manning. Learning language games through interaction. 2016.

1Space limits do not allow me to explain just how ill-posed these ideas are. You can read more about these ideas in [2].
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